Switch-Based Active Deep Dyna-Q: Efficient Adaptive Planning for Task-Completion Dialogue Policy Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating planning for task-completion dialogue policy learning

Training a task-completion dialogue agent with real users via reinforcement learning (RL) could be prohibitively expensive, because it requires many interactions with users. One alternative is to resort to a user simulator, while the discrepancy of between simulated and real users makes the learned policy unreliable in practice. This paper addresses these challenges by integrating planning into...

متن کامل

Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning

Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical fra...

متن کامل

Composite Task-Completion Dialogue System via Hierarchical Deep Reinforcement Learning

Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical fra...

متن کامل

Evaluating project’s completion time with Q-learning

Nowadays project management is a key component in introductory operations management. The educators and the researchers in these areas advocate representing a project as a network and applying the solution approaches for network models to them to assist project managers to monitor their completion. In this paper, we evaluated project’s completion time utilizing the Q-learning algorithm. So the ...

متن کامل

Deep Active Learning for Dialogue Generation

We propose an online, end-to-end, neural generative conversational model for opendomain dialogue. It is trained using a unique combination of offline two-phase supervised learning and online human-inthe-loop active learning. While most existing research proposes offline supervision or hand-crafted reward functions for online reinforcement, we devise a novel interactive learning mechanism based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33017289